
Journal of Computational Physics 226 (2007) 17–28

www.elsevier.com/locate/jcp
Adaptive spatial decomposition in fast multipole method

J.M. Zhang a,*, Masa. Tanaka b

a State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and

Automotive Engineering, Hunan university, Changsha 410082, China
b Faculty of Engineering, Shinshu University, Nagano, Japan

Received 13 September 2006; received in revised form 22 February 2007; accepted 25 March 2007
Available online 18 April 2007
Abstract

This work presents a new adaptive node-cluster algorithm for fast multipole method. In the algorithm, we use rectan-
gular boxes instead of cubes, subdivide a box based on its shape, and tighten the child boxes at each subdivision step. More
importantly, we determine the number of expansion terms in multipole to local translations according to the distance
between the two interaction boxes. Our method is tested using benchmark examples for three-dimensional potential prob-
lems. The results obtained show that the new algorithm can solve a problem with 100 thousands nodes in about 20 min,
and runs nearly three times faster than the standard algorithm. The proposed algorithm is especially suitable for treating
slender and shell-like structures.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The fast multipole method (FMM) [1] is regarded as one of the top 10 algorithms of the 20th century. It is
capable of achieving fast multiplication of particular dense matrices with vectors, and it allows for the reduc-
tion of memory complexity. Generally, the FMM reduces the computational cost for the matrix–vector mul-
tiplication from OðN 2Þ to O(N), where N is the total number of unknowns, thus making possible scientific and
engineering computations of large scale problems.

The FMM uses multipole expansions (in term of series) to approximate the effects of a distant group of
particles on a local group, and translations between these expansions. Another aspect of the FMM is that
it uses a hierarchical decomposition of space to define ever-larger groups as distances increase. In 3D cases,
an oct-tree decomposition is usually employed. The multipole expansions and translations are orchestrated
within the tree in an effective way to obtain an algorithm with O(N) asymptotic complexity.

The major obstacle in achieving reasonable efficiency with high accuracy is the large number of the
multipole to local translations (M2L). To overcome this obstacle, Greengard and Rokhlin [2] proposed a
0021-9991/$ - see front matter � 2007 Elsevier Inc. All rights reserved.
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new diagonal form, which reduces the M2L cost from O(p4) to O(p2), where p is the number of terms in the
truncated expansion series. Another way for reducing the cost of translation operators is to lower the number
of M2L operations by using a new tree data structure. Anderson [3] studied systematically how a spatial data
structure influences the performance of FMM, and concluded that a binary, spatially balanced decomposition
tree with tight bounds is the best tree data structure for FMM. Recently, Urago et al. [4] implemented this idea
in a FMM simulation of electrostatic field, and gained an efficiency improvement of two to three times faster
than the standard algorithm. To better balance the near-field and far-field work, White and Head-Gordon [5]
proposed a concept of fractional tiers (depth of tree), which was implemented by using a changeable number
of particles in the leaves of the tree. Their method gives a speedup approaching two times.

The FMM was first introduced as a fast solution method in astrophysics for simulation of N-body sys-
tems in which the interactions between the bodies are gravitational. Because of the computational analogy
between the force evaluation for the N-body problem and the matrix–vector multiplication, the FMM is
widely employed in conjunction with iterative solvers to accelerate the solutions of elliptic partial differential
equations (PDEs) through the boundary integral equation (BIE). We are working on the latter case. We
have proposed a boundary type meshless method, called hybrid boundary node method (HdBNM) [6,7],
and combined the method with FMM [8]. Like the boundary element method (BEM), the HdBNM only
needs points on the surface on a computational domain. The boundary-only distribution of points gives
chances to find a special tree data structure which is most efficient in grouping the points into well-separated
divisions.

In this paper, we proposed a new adaptive node-cluster algorithm for the fast HdBNM. In our algorithm,
we use rectangular boxes instead of cubes, and subdivide a box according to its shape. Therefore, the tree data
structure in the new algorithm is neither an oct-tree nor a binary tree. The number of offspring of a parent box
is dependent on the shape of the box. We also tighten the child boxes at each subdivision step, and generalize
the downward pass algorithm so that M2L translations can be performed among the child boxes of a single
parent box (brother boxes). More importantly, we determine the value of p for the M2L translations by the
distance between the two interaction boxes. Numerical examples presented show that the new algorithm can
solve a problem with 100 thousands nodes using about 20 min, and it runs nearly three times faster than the
standard algorithm for solving equation
2. Review of the hybrid boundary node method

In this paper, we combine the FMM with the hybrid boundary node method (HdBNM) to demonstrate the
proposed algorithm. In this section, therefore, we give a brief description of the HdBNM. The HdBNM is
based on the modified variational principle. With the 3-D steady state heat conduction problem as an example,
the independent functions in the modified functional are the temperature / in the domain, the boundary tem-
perature ~/ and boundary normal flux ~q. Consider a domain X enclosed by C ¼ C/ þ Cq with prescribed poten-
tial �/ and normal flux �q on the boundary portions C/ and Cq, respectively. The corresponding variational
functional PAB is defined as
PAB ¼
Z

X

1

2
/;i/;i dX�

Z
C

~qð/� ~/Þ dC�
Z

Cq

�q~/ dC; ð1Þ
where the boundary temperature ~/ satisfies the essential boundary condition, i.e., ~/ ¼ �/ on C/ .
Suppose that N nodes are well distributed on the bounding surface of the domain. The temperature inside

the domain is then approximated using fundamental solutions as follows:
/ ¼
XN

I¼1

/s
I xI : ð2Þ
At a boundary point, it follows that the normal flux is given by
q ¼
XN

I¼1

o/s
I

on
xI ; ð3Þ
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where /s
I is the fundamental solution with the source at a node sI; and xI are unknown parameters. For 3-D

potential problems, the fundamental solution can be written as
/s
I ¼

1

4prðQ; sIÞ
; ð4Þ
where Q is a field point, and r(Q, sI) is the distance between Q and sI.
The boundary temperature ~u and the normal flux ~q are interpolated by the moving least-square approxima-

tion (MLS) [7] as follows:
~/ðsÞ ¼
XN

I¼1

UIðsÞ/̂I ; ð5Þ

~qðsÞ ¼
XN

I¼1

UIðsÞq̂I : ð6Þ
In the above equations, UI(s) is the shape function of MLS; /̂I and q̂I are nodal values of temperature and
normal flux, respectively.

With the local sub-domain around each node taken into consideration, the stationary conditions can be
obtained by taking variations in Eq. (1) with respect to the independent variables. This gives the following
set of equations:
Ux ¼ H/̂; ð7Þ
Qx ¼ Hq̂; ð8Þ
where U, Q and H are defined as:
UIJ ¼
Z

CI

/s
J ðQ; sJ ÞvIðQÞ dC; ð9Þ

QIJ ¼
Z

CI

o/s
J ðQ; sJ Þ
onðQÞ vIðQÞ dC; ð10Þ

HIJ ¼
Z

CI

UJ ðQÞvIðQÞ dC; ð11Þ
where vI is a weight function, CI is a regularly shaped local region around a given node sI in the parametric
representation space of the boundary surface. Therefore, the integrals in Eqs. (9)–(11) can be calculated with-
out using boundary elements (for details refer to [7]).

For a well-posed problem, either /̂I or q̂I is known at a node sI on the boundary. Thus, Eqs. (7) and (8) can
be solved for the unknown parameters x. Then, by back-substitution of x into Eqs. (7) and (8), the boundary
unknowns are obtained for both temperature and normal flux by solving Eqs. (7) and (8) with H being the
coefficient matrix.

The coefficient matrices U and Q are dense and unsymmetrical. It requires O(N2) memory to store them and
O(N3) CPU time to solve them if a direct solver is employed. When we use an iterative solver, such as
GMRES, the most time-consuming part of computation will be the matrix–vector multiplication in each iter-
ation step. Considering an iteration vector xk at the kth step, the matrix–vector multiplication at the k + 1th
step is
x0kþ1
I ¼

XN

J¼1

Z
CI

/s
J vIðQÞxk

J dC ð12Þ
or
x0kþ1
I ¼

XN

J¼1

Z
CI

o/s
J

on
vIðQÞxk

J dC; ð13Þ
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where x0kþ1 is a temporary vector from which xkþ1 is then computed according to the iteration scheme of the
solver. Direct computation of Eqs. (12) and (13) gives an O(N2) algorithm. The FMM can be employed to
reduce the complexity to O(N).

3. Review of the fast multipole method

The FMM mainly uses three addition theorems which are briefly explained below.
First addition theorem: Define solid spherical harmonics Rm

n ðrÞ and Sm
n ðrÞ as [9]
Rm
n ðrÞ ¼

1

ðnþ mÞ! P m
n ðcos aÞeimbrn;

Sm
n ðrÞ ¼ ðn� mÞ!P m

n ðcos aÞeimb 1

rnþ1
:

Here ðr; a; bÞ is spherical coordinates of the point r; P m
n ðcos aÞ is the associated Lengendre function of integer

order m and degree n. Let r1 and r2 be two points with spherical coordinates ðr1; a1; b1Þ and ðr2; a2; b2Þ, respec-
tively. It follows that:
1

jr1 � r2j
¼

P1
n¼0

Pn
m¼�n

Rm
n ðr1ÞSm

n ðr2Þ; jr1j < jr2j;

P1
n¼0

Pn
m¼�n

Rm
n ðr2ÞSm

n ðr1Þ; jr1j > jr2j:

8>><
>>: ð14Þ
In the above equation, the overhead bar means the complex conjugate of a complex number.
Second addition theorem: If r1 and r2 are two vectors such that jr1j > jr2j, then
Sm
n ðr1 � r2Þ ¼

X1
n0¼0

Xn0

m0¼�n0
Rm0

n0 ðr2ÞSmþm0

nþn0 ðr1Þ: ð15Þ
Third addition theorem: If r1 and r2 are two arbitrary vectors, then
Rm
n ðr1 � r2Þ ¼

Xn

n0¼0

Xn0

m0¼�n0
Rm0

n0 ð�r2ÞRm�m0

n�n0 ðr1Þ: ð16Þ
Instead of treating interactions with each of the distant nodes individually, the FMM computes cell–cell inter-
actions. Consider two cells Ca and Cb, which contain Na and Nb nodes, respectively. The computational com-
plexity of a standard algorithm for the mutual interactions between the two groups is of order OðNa � N bÞ
(Fig. 1a). In the cell–cell strategy, however, it is reduced to OðNa þ N bÞ (Fig. 1b).

Substituting Eq. (4) into Eq. (12) and using the first addition theorem, with the summation over the nodes
included in Cb, we obtain
XNb

J¼1

Z
CI

/s
J vIðQÞxk

J dC ¼
X1
n¼0

Xn

m¼�n

Z
CI

1

4p
Sm

n ðO2QÞ
*

vIðQÞ dCMm
n ðO2Þ; ð17Þ
where the coefficients of multipole expansion Mm
n ðO2Þ are defined by
Mm
n ðO2Þ ¼

XNb

J¼1

Rm
n ðO2sjÞ

*

xk
J : ð18Þ
In Eqs. (17) and (18), the points O1, O2, Q and sJ are shown in Fig. 1c. Using further the second addition
theorem, Eq. (17) becomes
XNb

J¼1

Z
CI

/s
J vIðQÞxk

J dC ¼
X1
n0¼0

Xn0

m0¼�n0

Z
CI

1

4p
Rm0

n0 ðO1QÞ
*

vIðQÞ dCLm0

n0 ðO1Þ; ð19Þ
where the coefficients of local expansion Lm0

n0 ðO1Þ are given by



Fig. 1. Interaction between two cells.
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Lm0

n0 ðO1Þ ¼
X1
n¼0

Xn

m¼�n

ð�1Þn
0
Smþm0

nþn0 ðO1QÞ
*

Mm
n ðQ2Þ: ð20Þ
Eq. (20) is known as the multipole to local (M2L) translation, as it transforms the coefficients of multipole

expansion of Cb to the coefficients of local expansion of Ca.
Suppose that Ca and Cb are obtained by subdividing other two larger cells Cp

a and Cp
b, known as the par-

ent cells of Ca and Cb, respectively. Assume that Cp
a and Cp

b are still far away from each other (see Fig. 1d).
We can then transform the coefficients of multipole expansion of Cb to that of Cp

b (M2M) using the third addi-
tion theorem, transform the coefficients of multipole expansion of Cp

b to local moments of Cp
a (M2L), and

finally to coefficients of local expansion of Ca (L2L) using the third addition theorem again. Therefore,
Eq. (20) becomes
Lm0

n0 ðO1Þ ¼
X1
n¼0

Xn

m¼�n

Rm�m0

n�n0 ðO1QÞ
*

Lm
n ðQ01Þ ð21Þ
and
Lm
n ðO01Þ ¼

X1
n0¼0

Xn0

m0¼�n0
ð�1ÞnSmþm0

nþn0 ðO01O02Þ
*

Mm0

n0 ðQ02Þ; ð22Þ

Mm0

n0 ðQ02Þ ¼
X1
n¼0

Xn

m¼�n

Rm
n ðO02O2Þ

*

Mm�m0

n�n0 ðQ2Þ: ð23Þ
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The above process can be recursively repeated until it reaches the root cell which contains the entire compu-
tational domain. In the above process, the addition theorems are used to separate the source and target points
in the fundamental solution and in the solid spherical harmonics, so that the coefficients of multipole expansion

and local expansion are related only to each individual cells. Therefore, these coefficients can be calculated
independently and can be aggregated into ones to represent temperature due to ever larger groups of nodes.
Moreover, once calculated, they can be reused for other cell–cell interactions.
4. Tree construction

In the previous section, we have described the process of cell–cell interaction. We have seen that the two
points in two-point functions can be separated freely by addition theorems. All the resulted coefficients of
expansion can be calculated independently. This allows for the freedom to arrange these computations in
order to achieve better efficiency. In the FMM, actually, the cell–cell interaction is not performed separately
for each pair of well-separated cells. An elaborate algorithm has been designed. This algorithm is facilitated by
a tree data structure, which hierarchically decomposes the entire region into cells at different levels. There is a
tremendous flexibility in the choice of tree data structure that could be used in the algorithm. To enhance the
accuracy of the computation, it is important to note that the cells have roughly the same size in all directions.
It is also desirable that the cells chosen reflect the geometry of the computational domain as accurately as
possible.

The standard FMM algorithm uses an oct-tree. The entire computational domain is assumed to lie inside a
cube, which is referred as the root cube at level 0. The oct-tree is constructed by recursively subdividing the
cubes into eight sub-cubes by splitting each cube at the geometrically central point. The cubes at level l + 1 are
obtained from cubes at level l, where the eight sub-cubes at level l + 1 are considered children of the cube at
level l. The subdivision continues until cubes contain less than a given number of particles (e.g. boundary
nodes in HdBNM). If a child cube does not contain any node (that is, it is empty), it is deleted. A childless
cube is called a leaf.

With the tree, the FMM consists of two basic steps: upward pass and downwards pass. During the upward
pass, the coefficients of multipole expansion are summed from its children using the M2M translation for each
non-leaf cube. In the downwards pass, the tree is traversed from the root to leaves to compute the coefficients

of local expansion. For each cube C, these coefficients are the sums of two parts. Firstly, the L2L translation
collects the coefficients of C’s parent. Secondly, the M2L translation collects the coefficients of multipole expan-

sion of the cubes which are the children of the neighbors of C’s parent but are not adjacent to C (these cubes
compose the interaction list of C). Finally, for each leaf, the far interaction, which is evaluated using the coef-

ficients of local expansion at this cube is combined with the near interaction evaluated by iterating over all the
source nodes in the neighborhood of the leaf cube to obtain the entire sum in Eq. (12).
5. An adaptive tree

Usually, there are a large number of M2L translations for each cube at every level. Therefore, the compu-
tational cost of FMM is dominated by the M2L translation. One way to reduce the number of M2L transla-
tions is to find a better tree data structure [3–5]. The hypothesis is that a tree data structure that matches the
geometry of the computational domain and has shallow depth will allow the computation to be done with a
smaller number of M2L translations. It is obvious that the oct-tree does not necessarily match the structures
commonly used in engineering (a shell-like structure or a slender object, for example) since the oct-tree is con-
structed by choosing splitting planes oblivious to node distribution. As the cost of tree construction is minor, it
is possible to use a tree data structure that is more expensive to construct than the oct-tree and still achieve a
net gain in performance.

Anderson [3] has shown that a binary tree has advantages over the oct-tree in matching arbitrary structures.
In the binary tree, a non-leaf box has two child boxes, and subdivision of a box is always in the direction of the
longest side. Urago et al. [4] implemented the binary tree, and demonstrated that the number of M2L trans-
lations was reduced by three folds.
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In this paper, we attempt to establish an adaptive tree that can match structures of arbitrary geometries.
However, our aim is not to reduce the number of M2L translation, but to obtain smaller values of p in
M2L translations under the same precision by decomposing the computational domain into more compact
and well-separated cells. The adaptive tree is based on the standard oct-tree, but differs in the following
aspects:

1. Instead of using cubes, the adaptive tree uses rectangular boxes to decompose the computational domain. It
is believed that a rectangular box is more flexible in matching structures.

2. In contrast to the oct-tree, where subdivision of a cube is oblivious to geometry, a box in the adaptive tree is
split into child boxes based on its shape. Without loss of generality, let L1, L2, and L3 be the side lengths of
a box in the three coordinate directions, respectively, and suppose L1 > L2 > L3. We subdivide the box
according to the ratios between the values of the side lengths. More precisely, we consider three cases below:
(1) When L1=L2 >1.5, we split the box in the direction of the longest side (see Fig. 2a). Moreover, the

number of child boxes, n, also depends on the ratio, L1=L2. If L1=L2 > 7:5, n = 8; else
n = Int(L1=L2Þ+1, where Int( ) refers to the integer part of a real number.

(2) When L1/L2 < 1.5 and L2=L3 > 1:5, we split the box in the two directions shown in Fig. 2b. The num-
ber of child boxes is fixed to 4.

(3) When L1=L2 < 1:5 and L2=L3 < 1:5, we split the box in the three directions shown in Fig. 2c. The num-
ber of child boxes is fixed to 8.

3. Boxes of the adaptive tree are tightened at each subdivision step. Boxes with tightened bounds have been
investigated by Anderson [3], and are proven to be more efficient in separating a node set into well-sepa-
rated clusters. The oct-tree chooses to subdivide the cubes when the cells are split. This method is referred
to as loose bounds. In adaptive tree, on the other hand, we always use a smallest box to enclose the cluster of
boundary nodes. This is referred to as tight bounds. When cells are split, the location (and even the dimen-
sion) of the split depends upon the bounding faces of the box. This means that the tight bound and loose
bound tree for the same set of nodes will have a different structure. Note that when tight bounds are used,
the bounding box is computed before the cell is split. This is different from using loose bounds for comput-
ing all of the splits and then tightening the boxes. As mentioned in [3], tight bounds may hurt the perfor-
mance of the algorithm for dense particle based systems. In our case, however, as the nodes are only
distributed on the surface of a body, using tight bounds will increase the distance between two interacting
cells, thus make them more well-separated.
Fig. 2. Subdivision of a box.
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4. A more generalized downward pass algorithm is designed to allow M2L among the child boxes of a single
parent box. The standard algorithm always treats the child boxes of a parent box as neighbors. This is no
longer valid for the adaptive tree (see Fig. 2a).

5. In practical computation, the infinite series in Eqs. (19)–(23) are truncated after p terms. The standard algo-
rithm uses a fixed p for all series. Some researchers have also investigated variable orders of multipole
expansions [10]. In this paper, we use adaptive values of p for the series in all M2L translations. The value
is determined by the distance between each pair of interacting cells and their sizes. The error estimation of
the truncated series has been estimated in the original FMM paper [2] as well as in other papers, including
[11,12].

According to Eq. (5.7) of Ref. [2], we can write the following equivalent equation for the case of HdBNM:
XNb

J¼1

/s
J xk

J �
Xp

n0¼0

Xn0

m0¼�n0

1

4p
Rm0

n0 ðO1QÞ
*

Lm0

n0 ðO1Þ
�����

����� 6
PNb

J¼1xk
J

q� 2a
s

 !
a

q� a

� �pþ1

; ð24Þ
where a is the maximum radius of the two spheres that enclose the two interacting cells, respectively, and q is
the distance between the centers of the two boxes. Weighting with vI and integrating on CI (see Eq. (9)), we
have
XNb

J¼1

Z
CI

/s
J vIðQÞxk

J dC�
Xp

n0¼0

Xn0

m0¼�n0

Z
CI

1

4p
Rm0

n0 ðO1QÞ
*

vIðQÞdCLm0

n0 ðO1Þ
�����

�����6
PNb

J¼1

R
CI

vIðQÞxk
J dC

q�2a

 !
a

q�a

� �pþ1

:

ð25Þ

Therefore, the error introduced by the multipole to local translation is mainly bounded by the term
ða=ðq� aÞÞpþ1. In order to get the same accuracy of the standard FMM, suppose that, in the standard
FMM, the fixed value of p is pnorm and the side length of two nearest interacting cubes is b, then
a
q� a

� �pþ1

¼
ffiffi
3
p

2
b

2b�
ffiffi
3
p

2
b

 !pnormþ1

� 0:7637pnormþ1 ð26Þ
thus
p ¼ 0:117ðpnorm þ 1Þ log
q� a

a

� �
:

.
ð27Þ
In the above equation, we have added 1 to p to ensure that its value is bigger than 0.
6. Numerical results

The adaptive algorithm has been implemented in a code written in C++ and tested with a 3D potential
problem in a slender rectangular box with dimensions given by a = 2, b = 2 and c = 16. We have considered
two orientation cases of the box in the coordinate system, which are shown in Fig. 3. In the first case, the sides
of the box are parallel/perpendicular to the coordinate axes, while in the second case they are not. For each
case, the problem is solved in three ways: by methods with the oct-tree, by the binary tree and by the adaptive
tree. In computations, we set the maximum number of boundary nodes in a leaf to be 60, and take both p in
the standard algorithm and pnorm in the adaptive algorithm as 10. For GMRES, we terminate the iteration
when the relative error is less than 10�5. All computations are carried out on the same desktop computer with
an Intel(R) Pentium(R) 4 CPU (1.99 GHz).

To assess the accuracy of the method, we calculate the relative error of nodal values of normal flux using
the following ‘global’ L2 norm:
err ¼ 1

jqjmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðqðeÞi � qðnÞi Þ
2

s
; ð28Þ



Fig. 3. A slender box with different orientations.
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where qi is the normal flux at node i, and jqjmax is the maximum value among the nodal values; n is the total
number of nodes; the superscripts (e) and (n) refer to the exact and numerical solutions, respectively.

The following field distribution is used as the exact solution:
Table
Result

Node

Standa

[20,20
[28,28
[40,40
[49,49
[56,56

Binary

[20,20
[28,28
[40,40
[49,49
[56,56

Adapti

[20,20
[28,28
[40,40
[49,49
[56,56
/ ¼ x3 þ y3 þ z3 � 3yx2 � 3xz2 � 3zy2: ð29Þ
1
s for the box parallel to the coordinate axes

distribution DOFs NInteract Depth Leaves Ttree (s) Tcoef (s) Tequ (s) errq

rd oct-tree

, 160] 13,600 24,024 7 440 1 63 146 5.28 · 10�3

,224] 26,656 33,984 7 1120 3 139 260 4.10 · 10�3

,320] 54,400 98,136 8 1912 6 227 773 3.32 · 10�3

,392] 81,634 116,736 8 3392 30 495 968 2.03 · 10�3

,453] 107,744 116,736 8 3392 35 765 1038 1.23 · 10�3

tree

, 160] 13,600 3766 11 288 2 94 51 5.34 · 10�3

,224] 26,656 8262 13 682 4 167 126 4.17 · 10�3

,320] 54,400 16,968 14 1131 8 548 277 3.40 · 10�3

,392] 81,634 38,444 16 2268 34 629 607 2.11 · 10�3

,453] 107,744 39,324 16 2450 38 1056 1560 1.16 · 10�3

ve tree

, 160] 13,600 4726 6 288 2 71 36 5.42 · 10�3

,224] 26,656 15,084 7 678 4 111 86 4.34 · 10�3

,320] 54,400 31,251 7 1134 9 375 183 3.65 · 10�3

,392] 81,634 62,564 8 2268 37 465 361 2.66 · 10�3

,453] 107,744 77,638 8 2452 40 659 476 1.74 · 10�3
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A Dirichlet problem is solved, where the essential boundary conditions are imposed on all the surfaces
according to Eq. (29). For both geometries, we have performed computations on six node arrangements:
[10,80,10], [20,160,20], [28,224,28], [40,320,40], [49,392,49] and [56, 453,56], where ½na; nb; nc� refers to
nb � nc, nc � na and na � nb evenly spaced nodes on the surfaces perpendicular to the x, y and z axes,
respectively.

The results obtained are summarized in Tables 1 and 2 for the two orientation cases of the box, respec-
tively. In each table, the first and second columns of the table are the node arrangements and the total num-
ber of nodes; the third, fourth and fifth columns list the number of M2L translation (the total number of
cell–cell interactions), the depth of the tree and the number of leaves. In the sixth, seventh and eighth col-
umns, the total times used for constructing the tree, computing the near coefficients and solving the system
equations are listed, respectively. The relative errors of nodal values for normal flux are presented in the
ninth column.

The results show that, in all cases of node arrangement, the adaptive algorithm has achieved equiv-
alent accuracy but higher efficiency. The binary tree indeed resulted in less M2L translations and in
most cases runs faster than the oct-tree, but in one case runs even slower. The adaptive tree, however,
outperformed both oct-tree and binary tree in all cases. It uses slightly more CPU time (in seconds) for
constructing the tree. (Moreover, the time used for tree construction are so small that it can be ignored
in the total computing time.) For computing near coefficients, the CPU seconds are very close to those
used by the standard algorithm. However, for solving equations, the adaptive algorithm uses consider-
ably fewer seconds, which is nearly one third of that used by the standard algorithm. The bottom rows
of Tables 1 and 2 show that the new algorithm can solve a problem with 100 thousands nodes using
about 20 min.

Tables 1 and 2 also show that the number of M2L translations in the adaptive tree is much bigger than in
the binary tree, although the number of leaves of both trees are almost the same and the depth of the adap-
tive tree is much less shallow. This demonstrates that the reason for the better efficiency of the adaptive tree
is not the reduction of M2L translation number, but the use of adaptive values of p for M2L translation.
Plots of the M2L translation number against p for the boxes with sides parallel and nonparallel to the coor-
dinate axes is presented in Fig. 4. It is obvious that the value of p needed by most of the M2L translations is
merely 2.
Table 2
Results for the box nonparallel to the coordinate axes

Node distribution DOFs NInteract Depth Leaves Ttree (s) Tcoef (s) Tequ (s) errq

Standard oct-tree

[20,20,160] 13,600 36,688 6 614 1 97 262 5.13 · 10�3

[28,28,224] 26,656 64,000 7 1276 3 151 550 4.01 · 10�3

[40,40,320] 54,400 13,6912 7 2522 7 422 1385 3.56 · 10�3

[49,49,392] 81,634 16,511 8 2884 30 723 2153 3.11 · 10�3

[56,56,453] 107,744 16,674 8 3378 34 1110 3333 3.05 · 10�3

Binary tree

[20,20,160] 13,600 5922 11 333 2 101 70 5.05 · 10�3

[28,28,224] 26,656 12,694 13 626 4 182 158 4.11 · 10�3

[40,40,320] 54,400 26,454 14 1257 8 562 376 3.51 · 10�3

[49,49,392] 81,634 46,410 15 2034 33 781 866 3.20 · 10�3

[56,56,453] 107,744 55,920 15 2492 39 1060 1864 3.21 · 10�3

Adaptive tree

[20,20,160] 13,600 10,152 8 359 2 85 52 5.14 · 10�3

[28,28,224] 26,656 31,475 9 705 4 137 124 4.26 · 10�3

[40,40,320] 54,400 57,551 9 1395 9 371 270 3.69 · 10�3

[49,49,392] 81,634 93,433 9 2229 35 552 519 3.99 · 10�3

[56,56,453] 107,744 122,827 9 2731 40 762 679 3.98 · 10�3



Fig. 4. Number of M2L translations against p.
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7. Conclusion

In this paper, we have studied the performance of the FMM which uses a novel tree data structure, namely
an adaptive tree. Instead of using cubes, the adaptive tree uses rectangular boxes to cluster boundary nodes
into groups, and the boxes are split according their shapes in the process of constructing the tree. Therefore,
the new tree is more flexible in matching the geometry (global and local) of the computational domain. Most
importantly, the number of terms of the truncated series for M2L translations is determined by the distance
between the two interaction boxes. The adaptive algorithm can provide a huge improvement in efficiency over
the standard oct-tree.
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A numerical example is presented to study the performance of the proposed algorithm. Results obtained
show that the adaptive algorithm leads to trees with more compact cells and runs significantly faster than
the standard oct-tree, and also outperforms the algorithm with binary tree.
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